
Welcome back
to CS999H!

Week 9

Ed meme recap:

Questions on lecture content?
Or about cats?

Stress
● 429H is not an easy class

○ Lots of new materials
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer of the solution
○ This is expected—we want we everyone to succeed, but the only way we can help is if you ask for it

● If you find yourself overly overwhelmed or spending more time on this class than
you think you should be, please reach out to Dr. Gheith or the TAs
○ We can help out as far as the class goes
○ We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

Quiz everyone say CHEESE!
review

Question 1

Question 2

Free, 7 bytes Free, 7 bytes
Used,
1 byte

malloc(3);
malloc(3);
malloc(4);
malloc(4);

Question 3

Any questions on

parts of this

question?

Final Project

Final Project Info!
- work in groups of up to four people
- presentations will be April 25th and April 26th

- anything architecture related
- extend a project we already did

- something completely new

- a project proposal will be due at some point lol :D

- form groups + ideas next week

What we are looking for in presentation
- Be prepared!!

- Have a backup plan if your live demo doesn’t work

- Explain your work
- Provide background that is appropriate for CS429H students

- Ideally people will learn something about architecture from your presentation!

- Demonstrate what you did
- Show screenshots of results, live demos, whatever is appropriate for your project

Final Project Ideas !!!
- We will post a long list of project ideas on Ed

- Note: We have 2 FPGAs (maybe more) so please let us know early if you’ll want

one!

P7

Poll
How’s your status on P7?

A. What’s P7?

B. I’ve heard of it

C. I’ve cloned the starter code

and/or looked through it

D. I’ve started planning/writing

code

E. I’m mostly done but might still

have bugs

F. P7 any% speedrun

Arts & Crafts
We need three volunteers, you will be
creating the next big masterpiece on the
whiteboard

You get: 3 dry erase markers

We want: the drawing to the right repeated
25 times on the board and we want it done
fast

The tree, tent, and stars+moon should each
be a different color

As a class, you have 5 minutes to decide the
fastest way to draw this mural

Arts & Crafts
We need three volunteers, you will be
creating the next big masterpiece on the
whiteboard

You get: 3 dry erase markers

We want: the drawing to the right repeated
25 times on the board and we want it done
fast

The tree, tent, and stars+moon should each
be a different color

As a class, you have 5 minutes to decide the
fastest way to draw this mural

Single Cycle Processor
● One person at a time

● Have to wait for order to complete

before anyone else is allowed to

begin

● If each order takes T time to

complete, then N orders take N*T

time

Pipelined Processor
● L people at a time

● While one person is paying for their

food, another can start making their

burrito

● Each order takes T time, but now N

orders takes ~N*T/L time since we

keep the pipeline full

Memory Latency
● RAM in real computers usually takes ~100 cycles to access

○ Wire length matters! The speed of light isn’t that fast

○ Caches usually range from ~3-20 ish depending on level

● How does this affect your processor?

● What happens when you want to use a value that gets loaded from memory?

Pipeline Stages

Fetch

We need to figure out:

● How to ensure the
right information
is passed from
beginning to end

● How to account
for memory and
register
read/write delays

● How to handle
hazards (next
slides)

Decode WritebackExecute

I0

I0

I0

I0

I1

I1

I1

I2

I2I3

Cycle

1

2

3

4

Get the next
instruction

Determine
opcodes and

operands

Perform operation If needed, store value
to memory / register

Hazards
● What is a hazard?

● What are the three different types of hazards?

Hazards
● Prevent instructions from executing one after the other

● Data hazards
○ When a later instruction depends on the result of a previous instruction

● Control hazards
○ When instructions change the PC

● Resource hazards
○ When hardware can’t support certain instructions happening simultaneously

● Solutions:
○ (Often) forces you to insert cycles between certain instructions

■ Stalling, flushing

○ Forward values to where they need to go

Data Hazards
I0: movl r1, 3
I1: sub r2, r1, r0

Fetch Decode WritebackExecute

I0

I0

I0

I0

I1

I1

I1

Cycle

1

2

3

4

R1 is
updated

R1 is read

r1 won’t be updated
when i1 reads its value
from the register file

Control Hazards
I0: jmp r1
I1: *something*

Fetch Decode WritebackExecute

I0

I0

I0

I0

I1

I1

I1

Cycle

1

2

3

4

jmp alters
PC

i1 should not get
committed since we
branch to another
instruction

I1

Resource Hazards
I0: ld r1, r2
I1: *something*
I2: *something*
I3: *something*

What could go
wrong if we only
had one read port
for mem?

Can’t fetch ins + load
at the same time

Fetch Decode WritebackExecute

I0

I0

I0

I0

I1

I1

I1

I2

I2I3

Cycle

1

2

3

4

A Real Processor
● https://en.wikipedia.org/wiki/List_o

f_Intel_CPU_microarchitectures

● http://users.utcluj.ro/~baruch/book

_ssce/SSCE-Intel-Pipeline.pdf

● Modern Intel processors have 14

pipeline stages

● Split into the same basic chunks as

ours!

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
http://users.utcluj.ro/~baruch/book_ssce/SSCE-Intel-Pipeline.pdf
http://users.utcluj.ro/~baruch/book_ssce/SSCE-Intel-Pipeline.pdf

The Hardware Development Cycle
● What is Verilog?

○ A description of hardware

interactions

○ Only a small piece of hardware

development

Verilog Advice

Continuous Block
● Only use =, <= is a syntax error

● Always declare wires/regs as [x:0], not [0:x]

● Only use <=, NEVER USE =
● Only use always @(posedge clk), don’t use

negedge or other things in the @()
● Every line is run at the same time, so you

can swap values like this:

always @(posedge clk) begin

rA <= rB;

rB <= rA;

end

Procedural Block
Style Guide

Tips
● Follow the style guide
● Follow the style guide
● Don’t $display debug
● Add -Wall to the iverilog compile options
● Don’t touch verilog functions unless you know what you’re doing
● Ignore hazards, flushing, stalling etc. to start, and slowly add those in
● Use good wire & reg naming conventions (know which things are inputs to your stage

and what are outputs)
● Clearly mark and separate each stage with some consistent convention
● You can use multiple procedural blocks
● Your test case (a .hex file) MUST HAVE COMMENTS

○ It is fine to share assemblers/disassemblers, but your test case should be pretty understandable without
having to use a disassembler

some advice for debugging
- check that there are no blocking statements in your always blocks

- all always blocks should be @ (posedge clk)
- (except for in the clock module)

- you will get a 0 if you do not follow this

- if you have an if statement in an always block, are you updating the same set of

registers in both the if and the else? If not, is it intentional?

- are you updating the same register in multiple locations?

- the memory and register modules cannot stall

- a correct implementation that flushes on every hazard will get more
correctness points than an incorrect implementation that attempts stalling

Writing Verilog
● Write a little bit of good code - debugging is hard so try to get it right on the first try

● Have a clear naming convention - is execute_pc the output of or input to execute?

● Reuse wires as much as reasonably possible - don’t have immediate wires for each

instruction variant

● Clearly separate stages - don’t have intermixed code

● Recommended vscode extension

https://marketplace.visualstudio.com/items?itemName=mshr-h.VerilogHDL

Stage contracts
● The hard part of pipelining is the communication between stages - not the stages

themselves
● Without hazards, it’s quite simple - input comes in, one cycle later output is ready
● But with hazards, things are no longer clear
● When the flush wire goes high for a cycle, does that immediately invalidate the output

or does it take a cycle? When fetch receives a new PC, how many cycles till the
instruction is ready? When a module has to stall, exactly which stall wires does it set
and for how long?

● Treat stages as independent components - they only connect through wires defined in
your contract

Debugging
● Don’t use print statements, you’ll get too much output

● DO NOT USE THE VSCODE WAVETRACE EXTENSION IT IS BUGGED (as of last year,

and has not been updated since then so is still broken)

● GTKWave is vastly superior and is the only reasonable way to debug verilog

● X-forwarding works really well, just ssh with -X and launch gtkwave (use WSL on

Windows 11)

● Add all the important wires for each stage, group them (press G), and optionally color

code them

● Then make sure to save your layout, gtkwave will not remind you to save

● Searching for a value - select the wire you want to search, then search>pattern search

1>dropdown to “string”>plug in value>find next

● Right click on a signal, change the data format

Verilog Resources
● https://github.com/steveicarus/iverilog

● A Verilog Primer
○ Just note to use @(posedge clk) not @(*) in your code

https://github.com/steveicarus/iverilog
https://inst.eecs.berkeley.edu/~eecs151/fa20/files/verilog/Verilog_Primer_Slides.pdf

Questions?

 oooo$$$$$$$$$$$$oooo
 oo$$$$$$$$$$$$$$$$$$$$$$$$o
 oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$
 o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$
 oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$
 "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$
 $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$
 $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$
 "$$$""""$$$ "$$$
 $$$ o$$ "$$$o
 o$$" $$$ $$$o
 $$$ $$$" "$$$$$$ooooo$$$$o
 o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$
 $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""
 """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$
 "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$
 $$$o "$$""$$$$$$"""" o$$$
 $$$$o o$$$"
 "$$$$o o$$$$$$o"$$$$o o$$$$
 "$$$$$oo ""$$$$o$$$$$o o$$$$""
 ""$$$$$oooo "$$$o$$$$$$$$$"""
 ""$$$$$$$oo $$$$$$$$$$
 """"$$$$$$$$$$$
 $$$$$$$$$$$$
 $$$$$$$$$$"
 "$$$""""

